РЫЧКОВА СВЕТЛАНА ИГОРЕВНА

РАЗРАБОТКА И ОЦЕНКА КЛИНИЧЕСКОЙ ЭФФЕКТИВНОСТИ КОМПЛЕКСНОЙ СИСТЕМЫ ДИАГНОСТИКИ И ФУНКЦИОНАЛЬНОГО ЛЕЧЕНИЯ НАРУШЕНИЙ БИНОКУЛЯРНОГО И СТЕРЕОЗРЕНИЯ У ДЕТЕЙ

3.1.5 – Офтальмология

АВТОРЕФЕРАТ

Диссертации на соискание ученой степени доктора медицинских наук

Москва – 2021

Работа выполнена на кафедре глазных болезней Медико-биологического университета инноваций и непрерывного образования Федерального государственного бюджетного учреждения «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна» Федерального медико-биологического агентства России.

Научный консультант:

Доктор медицинских наук, профессор Лихванцева Вера Геннадьевна

Официальные оппоненты:

Тарутта Елена Петровна, доктор медицинских наук, профессор, руководитель отдела патологии рефракции, бинокулярного зрения и офтальмоэргономики Федерального Государственного Бюджетного Учреждения «Национальный медицинский исследовательский центр глазных болезней имени Гельмгольца» Министерства здравоохранения Российской Федерации.

Апрелев Александр Евгеньевич, доктор медицинских наук, заведующий кафедрой офтальмологии Федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Маркова Елена Юрьевна, доктор медицинских наук, заведующая отделом микрохирургии и функциональной реабилитации глаза у детей Федерального государственного автономного учреждения «Национальный медицинский исследовательский центр «Межотраслевой научно-технический комплекс «Микрохирургия глаза» им. акад. С.Н. Федорова» Министерства здравоохранения Российской Федерации.

Ведущая организация:

Министерств	о здрав	оохранен	ия Росс	ийской	Федера	ации	Федерал	іьное	государств	енное
бюджетное	образова	тельное	учрежде	ние вы	сшего	образ	вования	«Санк	ст-Петербур	огский
государствен	ный	педиатри	ческий	меди	цинский	í	универси	тет»	Министе	ерства
здравоохране	ния Росс	сийской Ф	Редерации	И						
n					2021					

Защита состоится «___» _____ 2021 г. в _____ часов на заседании диссертационного совета 68.1.010.01 по специальности 3.1.5 – Офтальмология (медицинские науки), созданного на базе Федерального государственного бюджетного учреждения «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна» Федерального медико-биологического агентства России, по адресу 125371, г. Москва, Волоколамское ш., 91.

С диссертацией можно ознакомиться в библиотеке Академии постдипломного образования Федерального государственного бюджетного учреждения «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна» Федерального медико-биологического агентства России, по адресу: 125371, Москва, Волоколамское шоссе, д. 91 и на сайте диссертационного совета http://medprofedu.ru

Ученый секретарь диссертационного совета 68.1	.010.01,
доктор медицинских наук, профессор	Овечкин И.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Бинокулярное зрение представляет собой объединенную деятельность сенсорных и моторных систем обоих глаз, обеспечивающую одновременное направление зрительных осей на объект фиксации, слияние двух монокулярных изображений этого объекта в единый зрительный образ и определение его пространственной локализации [Аветисов Э.С., 1977; Кащенко Т.П., 1978; Howard I.P., Rogers B.J., 2012].

Бинокулярный механизм, наряду с эволюционно более древним — стереокинетическим, составляет основу многоуровневой системы пространственного восприятия [Могилев Л.Н.,1982; Рычков И.Л., 1990]. Наиболее совершенным проявлением работы бинокулярного механизма является стереоскопическое зрение, позволяющее оценивать рельефность объектов и протяженность пространства [Рожков С.Н., Овсянникова Н.А., 2003].

Роль бинокулярного и стереозрения в жизни современного человека трудно переоценить в связи с активным использованием стереотехнологий в различных областях его производственной, научной и учебной деятельности [Щаденко С.В. и др., 2014; Филиппенко В.О., 2015; Вешнева И.В., 2016; Морозова Т.А. и др., 2018; Уваров А.Ю., 2018; Кароиla Z. et al., 2007;. Su L.M et al., 2009; Eckardt C. et al., 2016; Dutra-Medeiros M. et al., 2017].

Нарушения бинокулярного и стереозрения, наблюдающиеся при многих офтальмологических заболеваниях, могут ограничивать выбор профессии и видов спорта [Нероев В.В. и др. 2008; Вешнева И.В., 2016].

Классическая система плеопто — ортопто — диплоптического функционального лечения бинокулярных нарушений включает лечебные мероприятия, направленные на устранение главных препятствий для развития бинокулярного механизма — функциональной скотомы подавления (ФСП) и аномальной корреспонденции сетчаток (АКС), а затем на формирование нормального бинокулярного и стереозрения [Аветисов Э.С., 1977; Тарутта Е.П., Аклаева Н.А., 2015; Кащенко Т.П. и др., 2016; Espinasse-Berrod M.-A., 2018].

При этом, несмотря на множество существующих методов зрительных тренировок, аппаратного лечения и компьютерных технологий, в настоящее время отсутствуют патогенетически обоснованные алгоритмы их использования с учетом характера проявлений и степени выраженности бинокулярных нарушений.

В основном это обусловлено отсутствием достаточно эффективной комплексной системы диагностики, позволяющей выявлять и

дифференцировать нарушения, касающиеся не только отдельных компонентов бинокулярного зрения, НО и их взаимодействия в общем пространственного восприятия [Рабичев И.Э., 1998, 2019; Розанова О.И. и др., 2005]. Более детального диагностического исследования целью персонифицированного подхода к лечению в настоящее время требуют пространственно-временные $\Phi C \Pi$, характеристики закономерности аккомодационно-конвергентной синкинезии, проявления аномальных ретинокортикальных связей [Кащенко Т.П. и др., 2016; Jeanrot N., Jeanrot F., 2018; Espinasse-Berrod M.-A., 2018].

Стремительное развитие компьютерной техники значительно расширяет возможности диагностики и функционального лечения нарушений зрительных функций. [Рожкова Г.И. и др., 2015; Rastegarpour A., 2011; Herbison N. et al., 2013, 2016; Gambacorta C. et al., 2018].

Между тем, несмотря на разнообразие предлагаемых специальных компьютерных программ, до сих пор отсутствует четкое представление о необходимых параметрах используемых зрительных стимулов и оптимальных режимах их предъявления в зависимости от характера и степени бинокулярных нарушений у пациента. Очевидно, что данная проблема также связана с недостаточной разработанностью системы диагностики, ориентированной прежде всего на аппаратные условия исследования и не позволяющей использовать в полной мере преимущества компьютерных технологий. При оценки механическое сопоставление результатов бинокулярных ЭТОМ зрительных функций, полученных в разных условиях наблюдения, может приводить к ошибкам в интерпретации полученных данных и, соответственно, неправильному подходу к лечению пациента.

Нужно учитывать, отношения бинокулярного ЧТО векторные монокулярного механизмов пространственного восприятия могут меняться в искусственных условиях наблюдения, используемых различных и системах виртуальной реальности, стереотехнологиях также офтальмопатологии [Могилев Л.Н., 1982; Рычков И.Л., 1990; Рожкова Г.И., Васильева Н.Н., 2001; Меньшикова Г.Я., 2013]. В связи с этим, приобретает актуальность разработка методов оценки выраженности зрительных иллюзий систематических ошибок в оценке различных свойств (размера, формы, цвета, положения и перемещения в трехмерном пространстве) рассматриваемых объектов у детей с офтальмопатологией.

Цель исследования - разработка и оценка клинической эффективности комплексной системы диагностики и функционального лечения нарушений бинокулярного и стереозрения у детей.

Задачи исследования:

- 1. Разработать на основе современных представлений о многоуровневой организации пространственного восприятия комплексную систему диагностики нарушений бинокулярного и стереозрения, обеспечивающую персонифицированный подход к выбору оптимальной тактики функционального лечения выявленных нарушений.
- 2. Проанализировать результаты определения величины девиации на синоптофоре и при помощи призм для оценки моторного компонента бинокулярного зрения на базовом уровне пространственного восприятия и его учета в алгоритме функционального лечения.
- 3. Разработать в рамках исследования сенсорного компонента бинокулярного зрения модификацию классического теста Баголини для условий анаглифного разделения полей зрения с целью индивидуального подбора параметров компьютерных программ, используемых в функциональном лечении нарушений бинокулярного и стереозрения.
- 4. Провести сравнительный анализ корреспонденции сетчаток у детей с содружественным косоглазием под объективным и субъективным углом косоглазия при механическом, анаглифном и растровом разделении полей зрения для определения условий, обеспечивающих единые принципы проецирования изображения на сетчатку того и другого глаза, что, в свою очередь, необходимо для сопоставления результатов, полученных разными способами и выбора оптимальных параметров зрительной стимуляции.
- 5. Создать эффективный способ количественной и качественной оценки функционального торможения зрительной информации в центральных отделах анализатора одного ИЗ основных препятствий зрительного ДЛЯ восстановления бинокулярного и стереозрения, с целью мониторинга бмнокулярных зрительных функций и оценки эффективности проводимого лечения.
- 6. Разработать способ диагностики, изучить частоту возникновения и основные характеристики парадоксальной монокулярной фузии, возникающей в результате формирования патологических ретино-кортикальных связей с целью выбора оптимального алгоритма функционального лечения нарушений бинокулярного и стерозрения.

- 7. Изучить закономерности проявлений аккомодационно-конвергентной синкинезии при содружественном косоглазии и определить экспертные критерии индивидуального подбора оптимальной оптической коррекции при проведении зрительных упражнений в условиях бификсации.
- 8. Исследовать на ассоциативном уровне пространственного восприятия проявления зрительных иллюзий и оценить возможность их использования в дифференциальной диагностике органической и функциональной патологии зрительного анализатора у детей с нарушениями бинокулярного и стереозрения.
- 9. Изучить параметры зрительных стимулов и режимов их предъявления, необходимые для возникновения стереоэффекта и на основе полученных данных разработать компьютерные технологии, позволяющие проводить диагностику качества стереозрения и функциональное лечение его нарушений.
- 10. Создать алгоритмы функционального лечения при разных видах нарушений бинокулярного и стереозрения у детей и оценить их эффективность.

Научная новизна исследования

Впервые, благодаря использованию разработанной многоуровневой системы диагностики бинокулярного и стереозрения, получены новые научные данные, расширяющие представления о проявлениях нарушений сенсорного, окуломоторного и аккомодационного компонентов бинокулярного механизма на базовом уровне и нарушений восприятия стереостимулов и зрительных иллюзий на ассоциативном уровне пространственного зрения у детей с различной офтальмопатологией.

Впервые, благодаря разработанным диагностическим методам, детально исследованы взаимоотношения пространственно-временных параметров функционального торможения зрительной информации, являющегося одним из главных препятствий к восстановлению и развитию бинокулярного и стереозрения у детей с косоглазием и амблиопией.

Впервые проведен детальный анализ И описаны клиникозрительного функциональные проявления уникального явления парадоксальной монокулярной фузии, отражающего неадекватное использование бинокулярных механизмов пространственного восприятия при одновременном проецировании одного изображения на центральную зону сетчатки косящего глаза, а парного ему изображения, на геометрически соответствующий углу косоглазия периферический участок сетчатки того же глаза.

Впервые помощи разработанной компьютерной при технологии исследования стереозрения, предусматривающей использование разных режимов предъявления стереостимулов с определенными характеристиками, индивидуальные особенности стереовосприятия детей различными нарушениями бинокулярных зрительных функций.

Теоретическая и практическая значимость работы

Разработана, апробирована и предложена для практического применения эффективная комплексная система диагностики, позволяющая проводить детальный анализ нарушений взаимодействия сенсорного, окуломоторного и аккомодационного компонентов бинокулярного механизма, а также векторных отношений бинокулярного и монокулярного механизмов у детей с нарушениями бинокулярного и стереозрения и выполнять мониторинг функционального лечения.

И высокоэффективный Предложен, апробирован внедрен новый, бинариметрический метод диагностики парадоксальной монокулярной фузии, позволяющий патологические ретино-кортикальные выявлять пациентов с содружественным косоглазием в четыре раза чаще, чем синоптофор, и исследовать данный зрительный феномен как в бинокулярных, так и в монокулярных условиях наблюдения, что облегчает выбор алгоритма лечения, направленного на устранение патологических и формирование нормальных ретино-кортикальных отношений.

разработанной Впервые основе системы качественных И количественных экспертных критериев диагностики остроты зрения, оптимальной оптической коррекции И контролем аккомодации ПОД бификсации, проведен анализ эффективности использования гиперкоррекции при проведении зрительных упражнений на начальном этапе функционального лечения детей с содружественным косоглазием на фоне «соответствующей» рефракции и гипокоррекции на фоне «несоответствующей» рефракции, что наиболее обеспечивает персонифицированный подход созданию К благоприятных условий для формирования бинокулярного зрительного образа.

Предложен способ количественной оценки выраженности зрительных иллюзий в качестве дополнительного дифференциально-диагностического критерия органических и функциональных нарушений у детей с нарушением бинокулярного и стереозрения.

Созданная система диагностики нарушений стереозрения на основе компьютерных технологий с разными режимами предъявления различных стереостимулов, позволяет обеспечить персонифицированный подход к выбору

параметров и режимов предъявления зрительных стимулов при проведении функционального лечения, что приводит к улучшению показателей фузионной способности, повышению остроты зрения, развитию стереозрения и улучшению его качества у пациентов с содружественным косоглазием и рефракционной амблиопией.

Положения, выносимые на защиту:

- 1. Многоуровневая система экспертных критериев диагностики бинокулярного и стереозрения у детей, разработанная с учетом принципов системной организации пространственного зрения, позволяет эффективно выявлять и дифференцировать возможные причины его нарушений.
- 2. Разработанная комплексная система диагностики позволяет проводить полный детальный анализ феномена функционального торможения зрительной информации, патологических ретино-кортикальных нарушений взаимодействия сенсорного, моторного и аккомодационного компонентов бинокулярного зрения, выраженности зрительных иллюзий, условий формирования стереоэффекта, а также анализ векторных отношений монокулярного и бинокулярного механизмов пространственного зрения у детей с офтальмопатологией.
- 3. Созданные алгоритмы функционального лечения бинокулярных нарушений на основе разработанных экспертных критериев диагностики обеспечивают персонифицированный подход к функциональному лечению детей с нарушениями бинокулярного и стереозрения.
- 4. Эффективность созданных алгоритмов функционального лечения бинокулярных нарушений подтверждается положительной динамикой зрительных функций: улучшением фузионной способности; увеличением фузионных резервов; повышением монокулярной и бинокулярной остроты зрения; улучшением взаимодействия сенсорного, моторного, проприоцептивного аккомодационного компонентов бинокулярного И повышением качества стереозрения; а также нормализацией механизма, векторных отношений бинокулярного монокулярного И механизмов пространственного зрения.

Внедрение результатов исследования

Разработанные способы диагностики и функциональной коррекции зрительных нарушений применяются на базе кабинета офтальмолога ШО№5 (для детей с офтальмопатологией) ГБОУ Школа 1499 г.Москвы; кабинета охраны зрения ГБУЗ ДГП №7 г. Москвы; детского отделения Иркутского

МНТК «Микрохирургия глаза» им. С.Н.Федорова; используются в комплексе компьютерных программ для диагностики и развития зрительных функций, разработанном в НПП Центр «Реабилитация» РНИМУ им. Н.И. Пирогова. Результаты исследования используются также в цикле лекций для врачейофтальмологов и ординаторов на кафедре глазных болезней Медикобиологического Университета Инноваций и Непрерывного Образования ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России.

Апробация работы

Основные положения диссертации доложены обсуждены: И на Европейских конференциях по зрительному восприятию (ECVP) в 2008 г. (Utrecht, Netherlands), в 2009 г. (Regensburg, Germany), в 2010 г. (Lausanne, Switzerland), в 2011 г. (Toulouse, France), в 2012 г. (Alzhero, Italia), в 2013 г. (Bremen, Germany), в 2015 г. (Liverpool, UK), в 2016 г. (Barcelona, Spain), в 2017 г. (Berlin, Germany), в 2019 г. (Leuven, Belgium); на научно-практических конференциях «Федоровские чтения» (Москва) в 2006, 2007, 2008, 2013 гг.; на научных конференциях офтальмологов «Невские горизонты-2012», «Невские горизонты-2014», «Невские горизонты-2016», «Невские горизонты-2018» (СПб); на 41-м собрании Европейского педиатрического офтальмологического общества (41-st Meeting of the European Paediatric Ophthalmological Society) в 2015 г. (СПб); на Российских Общенациональных Офтальмологических Форумах в 2015, 2018 гг., на 1-м международном симпозиуме по физиологии зрения (1st International Symposium on Visual Physiology, Environment, and Perception) в 2016 г. (Riga, Latvia).

Публикации

По теме диссертации опубликовано 52 работы. Из них: 17 статей в ведущих рецензируемых изданиях, рекомендованных ВАК Министерства образования и науки РФ, 1 монография, 14 статей в отечественных журналах, 3 — в зарубежных журналах (2 из них в WoS, Scopus), 7 — в отечественных сборниках, 10 — в зарубежных сборниках (входят в WoS). Получено 4 патента.

Структура и объем диссертации

Работа состоит из введения, обзора литературы, описания материала и методов исследования, результатов собственных исследований, заключения, практических рекомендаций, выводов и библиографии, включающей 345 источников (из них 200 иностранных). Общий объем диссертации составляет 300 страниц печатного текста, работа иллюстрирована 64 рисунками и 81 таблицами.

СОДЕРЖАНИЕ РАБОТЫ

Методология и методы исследования

Все исследования проведены по единому алгоритму на местах работы автора: 1) Иркутский филиал Федерального государственного автономного учреждения «Межотраслевой научно-технический комплекс «Микрохирургия глаза» имени академика С.Н. Федорова Министерства здравоохранения РФ; 2) Лаборатория физиологии зрения Института проблем передачи информации имени А.А.Харкевича, РАН (Москва); 3) ГБУЗ г. Москвы ДГП №99 ДЗМ, на базе ГБОУ школа №1499, ШО №5 (для детей с офтальмопатологией).

Все исследования проводили в соответствии с положениями Хельсинкской Декларации Всемирной медицинской ассоциации (1996, 2002).

Всего обследовано и пролечено 946 детей в возрасте от 6 до 17 лет.

На первом этапе работы всем детям провели офтальмологическое обследование в соответствии с Федеральными рекомендациями, включавшее: определение корригированной и некорригированной остроты зрения в бинокулярных и монокулярных условиях наблюдения по таблицам Снеллена и таблицам, разработанным ИППИ РАН им.А.А.Харкевича для разных расстояний исследования [Рожкова, Токарева, 2001]; определение рефракции при помощи авторефрактометра «Huvitz» (Корея); биомикроскопию на щелевой лампе «Nidek» (Япония); обратную офтальмоскопию с использованием бесконтактной линзы 60 дптр «Volk Optical» (США).

Дополнительно при помощи классических методов определяли величину девиации и состояние корреспонденции сетчаток на синоптофоре «СИНФ-1» (Россия), характер зрения по четырехточечному цветотесту «ЦТ-1» (Россия) и состояние стереозрения по Fly-тесту и Lang-тесту.

По итогам диагностического обследования при помощи классических методов были выделены: 1) дети с нарушениями стереозрения, 2) дети с нарушениями бинокулярного и стереозрения, 3) дети без нарушений бинокулярного и стереозрения. В первую группу входил 191 ребенок в возрасте от 7 до 17 (в среднем 11,45 ±0,3) лет с рефракционной амблиопией. Вторая группа включала 304 ребенка от 6 до 17 (в среднем 10,8±0,24) лет с содружественным косоглазием и 120 детей от 7 до 17 (в среднем 12,75±0,3) лет с частичной атрофией зрительного нерва (ЧАЗН). Вторая группа включала 151 ребенка от 7 до 17 (10,3±0,3) лет с аметропией и 180 детей 7 до 17 (в среднем 10,9±0,3) лет без офтальмопатологии.

На следующем этапе исследования была разработана **многоуровневая система диагностики** нарушений бинокулярного и стереозрения, позволяющая

проводить их детальный анализ и мониторинг в процессе функционального лечения (рисунок 1).

АЛГОРИТМ ДИАГНОСТИКИ НАРУШЕНИЙ БИНОКУЛЯРНОГО И

СТЕРЕОЗРЕНИЯ Моторный компонент бинокулярного механизма Базовый уровень Уточненная методика дифференцированного определения величины тропии и фории Сенсорный компонент бинокулярного механизма Классические методы исследования монокулярной и бинокулярной остроты зрения для дали и для близи Классические методы исследования характера зрения: четырехточечный цветотест, классический тест Баголини Модифицированный тест Баголини для исследования характера зрения в условиях анаглифного разделения полей зрения Пространственное зрение Разработанная компьютерная программа «Скотома» для качественной и количественной оценки функционального торможения Разработанный способ исследования парадоксальной монокулярной фузии Взаимодействие сенсорного, моторного, проприоцептивного и аккомодационного компонентов бинокулярного механизма Разработанная методика исследования оптимальной коррекции, аккомодации и остроты зрения под контролем бификсации на бинариметре Стереозрение Классическая методика исследования стереокинетического эффекта Ассоциативный уровень Разработанные компьютерные технологии для исследования стереозрения в разных режимах предъявления стереостимулов Зрительные иллюзии Классические методы количественной оценки иллюзий Мюллера-Лайера и вращения неоднозначных фигур Разработанные методы количественной оценки иллюзий Поггендорффа и мерцающей решетки

Рисунок 1 – Алгоритм диагностики нарушений бинокулярного и стереозрения.

Далее, на основании полученных результатов, **были созданы алгоритмы функционального лечения** детей в зависимости от вида и характера бинокулярных нарушений (рисунок 2).

АЛГОРИТМЫ ФУНКЦИОНАЛЬНОГО ЛЕЧЕНИЯ НАРУШЕНИЙ БИНОКУЛЯРНОГО И СТЕРЕОЗРЕНИЯ

Рисунок 2 — Алгоритмы функционального лечения нарушений бинокулярного и стереозрения.

Статистический анализ результатов исследования

Полученные данные подвергали статистическому анализу при помощи компьютерной программы SPSS. Были вычислены средние арифметические значения, медианы, стандартные отклонения. Правильность распределения значений в группах оценена с использованием критерия Колмогорова-Смирнова. Для сравнения показателей в разных группах использовали параметрический критерий Стьюдента для независимых выборок или непараметрический критерий Манна-Уитни. Для оценки изменений показателя в связанных выборках использовали параметрический критерий Стьюдента для связанных выборок или непараметрический критерий Вилкоксона. определения статистической значимости различий в одной паре сравнений критический уровень составлял 0,05. При использовании больше одной пары сравнений применяли поправку Бонферрони. Использовали также построение таблиц сопряженности, сравнение набора частот в группах с применением критерия у Пирсона для независимых выборок и у Фридмана для связанных выборок. Проводили дисперсионный анализ ANOVA и корреляционный анализ использованием параметрического критерия Пирсона непараметрического критерия Спирмена. Для исследования диагностической ценности разработанных нами диагностических тестов мы анализировали их чувствительность и специфичность по Байесу.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

- 1 Разработка методов диагностики бинокулярного и стереозрения
- 1.1 Исследование моторного компонента бинокулярного механизма пространственного зрения с проведением сравнительного анализа результатов определения величины девиации разными способами у детей с содружественным косоглазием

Для уточнения методических приемов, позволяющих измерять величину тропии и общую величину отклонения глаза, включающую тропию и форию у детей с косоглазием, использовали два варианта измерения величины девиации на синоптофоре и два варианта cover-теста с призмами.

В данном исследовании показана сопоставимость результатов измерения величины девиации, включающей тропию и форию на синоптофоре с монокулярным альтернированием и при помощи альтернирующего cover-теста с призмами.

Полученные результаты демонстрируют сопоставимость результатов измерения величины только тропии на синоптофоре с использованием бинокулярных условий наблюдения и одностороннего cover-теста с призмами

(рисунок 3). Возможность дифференцированно подходить к измерению величины девиации имеет большое значение для правильного подбора призменной компенсации угла косоглазия при проведении функционального лечения.

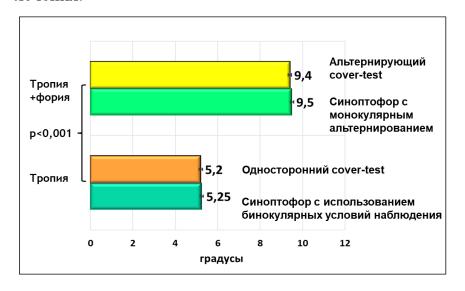


Рисунок 3 — Сравнение результатов оценки величины девиации (n=240).

1.2 Исследование сенсорного компонента бинокулярного механизма пространственного зрения

1.2.1 Результаты апробации разработанной собственной модификации теста Баголини для анаглифных условий разделения полей зрения

Классический тест Баголини (КТБ), с растровым разделением полей зрения (ПЗ) создает условия наблюдения максимально приближенные к естественным (рисунок 4, a). Между тем, в большинстве современных компьютерных программ, предназначенных для тренировки бинокулярного и стереозрения, используется анаглифное разделение ПЗ. В связи с этим нами был разработан модифицированный тест Баголини (МТБ) для диагностики бинокулярного зрения под субъективным (СУ) и объективным (ОУ) углом косоглазия в условиях анаглифного разделения полей зрения (рисунок 4, δ).

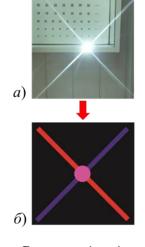


Рисунок 4-a) КТБ, δ) МТБ

МТБ предусматривает качественную количественную И оценку бинокулярного зрения. Качественная предполагает оценка выявление различных видов нарушения бинокулярного зрения: диплопии, регионарной и тотальной функциональной скотомы подавления $(\Phi C\Pi)$, аномальной корреспонденции сетчаток (АКС).

МТБ при сравнении с КТБ обладает высокой чувствительностью и специфичностью в выявлении наличия / отсутствия бинокулярного зрения при исследовании как под СУ, так и под ОУ (рисунок 5).

МТБ позволяет более точно диагностировать функциональное торможение по сравнению с

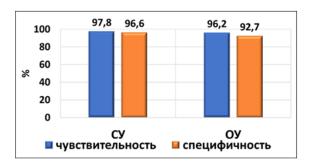
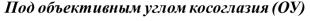


Рисунок 5 – Чувствительность и специфичность МТБ.

классическим тестом Баголини и четырехточечным цветотестом.

Для количественной оценки ФСП определяют минимальную длительность поочередного предъявления каждому глазу соответствующих деталей изображения, при которой ФСП исчезает.

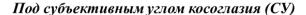

Преимуществами МТБ перед синоптофором (классическим прибором также позволяющим предъявлять стимулы в альтернирующем режиме) являются: более близкие к естественным условия наблюдения; более широкий диапазон длительностей альтернирующего предъявления стимулов для количественной оценки ФСП (20-5000 мс с МТБ против 125-500 мс на синоптофоре). Количественную оценку глубины ФСП использовали на следующих этапах работы для индивидуального подбора режима предъявлении стимулов при проведении лечения и его мониторинга.

1.2.2 Результаты сравнительного исследования корреспонденции сетчаток у детей с содружественным косоглазием при использовании разных принципов разделения полей зрения

В предыдущих исследованиях корреспонденции сетчаток (КС) в разных условиях разделения ПЗ показаны существенные различия результатов (Рожкова Г.И., Плосконос Г.А., 1988; Кащенко Т.П. и др., 2016). Между тем, до настоящего времени сравнительный анализ проводился без учета положения проекции объекта на сетчатку того и другого глаза.

В нашем исследовании КС мы соблюдали единые принципы проецирования изображений на центральные и периферические участки сетчаток. Для оценки КС с классическим и модифицированным тестами Баголини под ОУ, угол косоглазия компенсировали призмами. Оценку под СУ проводили без призменной компенсации. На синоптофоре КС под ОУ и СУ оценивали по классической методике.

При исследовании КС под ОУ результаты у большинства детей были сопоставимы. В остальных случаях различия отражали влияние способов разделения полей зрения (рисунок 6).



Примечания: HKC- нормальная корреспонденция сетчаток, $\Phi C\Pi-$ функциональная скотома подавления.

Рисунок 6 — Результаты исследования корреспонденции сетчаток разыми методами под объективным углом косоглазия.

Подобная картина наблюдалась и при исследовании по СУ (рисунок 7).

Примечания: HKC — нормальная корреспонденция сетчаток, $\Phi C\Pi$ — функциональная скотома подавления, AKC — аномальная корреспонденция сетчаток.

Рисунок 7 — Результаты исследования корреспонденции сетчаток разыми методами под субъективным углом косоглазия.

Полученные данные демонстрируют необходимость учета положения проекций изображения на сетчатках того и другого глаза для правильной оценки состояния бинокулярного зрения и персонифицированного подхода к лечению.

1.2.3 Результаты апробации разработанной компьютерной программы «Скотома» для качественной и количественной оценки ФСП у детей с содружественным косоглазием

Для наиболее детального исследования ФСП в условиях анаглифного разделения полей зрения была создана специальная программа «Скотома» компьютерного программного комплекса СКАБ (Патент №2645415 РФ от 21.02.2018). Качественная оценка функционального торможения у детей с косоглазием при помощи разработанной программы «Скотома» показала, что наличие бифовеального слияния не исключает периферическое функциональное торможение. При этом индивидуальные карты бинокулярного поля зрения демонстрируют большое разнообразие локализации, размера и формы зон периферического функционального торможения. (рисунок 8).

Рисунок 8 — Карты тестирования пациентов с содружественным косоглазием: a - монолатеральным сходящимся OS; δ — монолатеральным расходящимся OD; ϵ в) альтернирующим непостоянным сходящимся.

Чувствительность данного метода (при сравнении с синоптофором) 69,1%, **специфичность** - 99,6%.

Для количественной оценки ФСП у детей с содружественным косоглазием при помощи программы «Скотома» определяли число пропущенных периферических тест-объектов в бинокулярных и монокулярных условиях наблюдения. Установлено, что у детей без центральной ФСП оно достоверно меньше, чем у детей с ее наличием. У детей контроля количество пропущенных тест-объектов минимально (р<0,001).

Выявлена сильная положительная корреляция между определяемыми пространственными (при помощи программы «Скотома») и временными (при исследовании с МТБ) характеристиками функционального торможения (r = 0.94, p<0,001 для лучшевидящего глаза и r = 0.93, p<0,001 для хужевидящего). Полученные данные свидетельствуют о целесообразности комплексного использование этих методов в диагностике ФСП.

1.2.4 Результаты апробации разработанного собственного метода диагностики парадоксальной монокулярной фузии

Парадоксальная монокулярная фузия (ПМФ) — уникальный зрительный феномен, отражающий аномальные ретино-кортикальные связи. В литературе до настоящего времени имелись лишь единичные сообщения о пациентах с ПМФ (Bielscowsky A., 1898; Morgan M.W., 1955; Ramachandran V.S. et al. 1994).

Для исследования ПМФ аппарат ABИЗ-01 (бинариметр) был использован по новому назначению с монокулярным и бинокулярным предъявлением тестобъектов (рисунок 9).

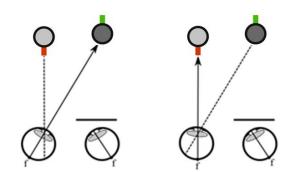


Рисунок 9 - Схема проекций фиксируемого и нефиксируемого тестобъектов на сетчатку косящего глаза: f — фовеа, стрелка указывает направление взгляда.

По результатам обследования 240 детей с содружественным косоглазием выделили 44 пациента (18,3%) в возрасте от 9 до 17 (в среднем 14,2±0,4) лет с явлениями ПМФ. Среди них: 28 детей со сходящимся косоглазием и 16 детей – с расходящимся; 27 детей с альтернирующим косоглазием и 17 с монолатеральным. У всех детей с ПМФ косоглазие было непостоянным, но со стабильной по величине и направлению девиацией. При этом на синотофоре только у 11 (4,6% от 240) детей была выявлена АКС. Обнаруженными проявлениями ПМФ были: эффект блеска (ЭБ), дополнительные мнимые детали, дополнительный мнимый зрительный образ.

Показано, что характерными особенностями пациентов с ПМФ являлись непостоянный, но стабильный по величине угол косоглазия, тенденция к формированию АКС. При этом эффекты ПМФ наблюдаются у этих пациентов в условиях проецирования одного изображения на центральную зону сетчатки косящего глаза, а второго, парного ему изображения, на периферический участок сетчатки того же глаза, геометрически соответствующий углу косоглазия. Возможность диагностировать ПМФ являлась на следующих этапах работы необходимым условием для правильного выбора алгоритма лечения детей с косоглазием.

1.3 Исследование взаимодействия сенсорного, моторного, проприоцептивного и аккомодационного компонентов бинокулярного зрения

На аппарате ABИЗ-01 в монокулярных условиях определяли оптимальную оптическую коррекцию, монокулярную остроту зрения и объем абсолютной аккомодации (OAA). В бинокулярных условиях определяли оптимальную оптическую коррекцию, бинокулярную остроту зрения, и объем относительной аккомодации (OOA) под контролем бинокулярного зрительного образа (БЗО). Исследование проводили у пациентов с содружественным косоглазием (n=166) и пациентов с аметропией без косоглазия (n=110).

Показано, что у детей с косоглазием в сочетании с «соответствующей» рефракцией (гиперметропической при сходящемся косоглазии и миопической при расходящемся) бинокулярный зрительный образ легче возникает и лучше удерживается в условиях гиперкоррекции, степень которой зависит от величины девиации (рисунок 10). Полученные результаты позволили успешно использовать гиперкоррекцию на первых этапах функционального лечения таких пациентов.

Рисунок 10 — зависимость величины гиперкоррекции от величины девиации у детей со сходящимся косоглазием на фоне гиперметропической рефракции (a) и у детей расходящимся косоглазием на фоне миопической рефракции (б).

Установлено, что у детей с косоглазием в сочетании с «несоответствующей» рефракцией в функциональном лечении целесообразно использование гипокоррекции.

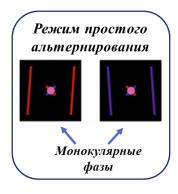
При сравнении показателей аккомодации и остроты зрения на разных расстояниях от глаз установлено, что во всех случаях на расстоянии 1м от глаз выявляются более высокие значения, чем на расстояниях 0,5м и 5м (p<0,001).

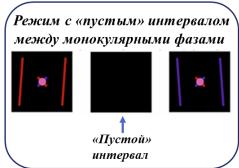
1.4 Исследование стереозрения

1.4.1 Результаты исследования стереокинетического эффекта

Рисунок 11 — Тестовая фигура для оценки СЭ.

Стереокинетический эффект (СЭ), основанный на относительном смещении сетчаточных проекций при вращении кольцевого изображения, характеризует векторные отношения монокулярного и бинокулярного механизмов пространственного зрения (рисунок 11).


Показано, что у детей с ЧАЗН (n=106) преобладало восприятие виртуального конуса. Для детей контроля (n=146) характерным было чередование виртуальных фигур, а в некоторых случаях


изображение воспринималось плоским.

Показатели детей с содружественным косоглазием (n=154) «промежуточными» между показателями детей контроля и детей с ЧАЗН. Выявлены межгрупповые различия показателей бинокулярных и монокулярных сниженные монокулярные величины виртуального конуса: бинокулярные показатели у детей с ЧАЗН по сравнению с детьми других групп; отсутствие как у детей с ЧАЗН, так и у детей с косоглазием разницы бинокулярных и монокулярных оценок, характерной для детей контроля (p<0,001). Показана наибольшая длительность доминирования виртуального конуса в группе детей с ЧАЗН. Полученные данные указывают на перспективу использования СЭ В дифференциальной диагностике органической функциональной патологии органа зрения.

1.4.2 Результаты апробации разработанных компьютерных технологий для исследования стереозрения в разных режимах предъявления стереостимулов

На основе стереоизображений, созданных J.Ninio, была разработана собственная серия стереостимулов, содержащих линейные (центрально и периферически расположенные) элементы, создающие при успешной фузии эффекты фронтопараллельного разделения, наклона и разворота, а также случайно-точечные стереограммы, создающие эффект вертикального и горизонтального цилиндров. Использовали разные режимы предъявления стереостимулов (Патент №2718266 РФ от 01.04.2020) (рисунок 12).

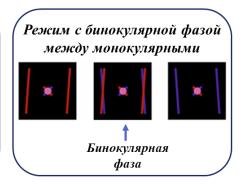


Рисунок 12 – Используемые режимы альтернирующего предъявления стереостимулов.

Установлено, что всех детей контрольной группы без y (n=167)офтальмопатологии наблюдается: прогрессивное уменьшение длительности монокулярных фаз (при которой еще возможен стереоэффект) при переходе от режима простого альтернирования к режиму с «пустым» интервалом; возможность значительно увеличивать длительность монокулярных фаз при переходе к режиму с бинокулярной фазой; появление нестабильного стереопсиса с чередованием восприятия объемного (во время бинокулярной фазы) и плоского (во время монокулярных фаз) изображения при длительности бинокулярной фазы свыше 50-80 мс в сочетании с длительностью монокулярных фаз больше 500мс; полное отсутствие стереопсиса при сочетании длительностей монокулярных фаз больше 3,5-4,5с с длительностью меньше 2-2,5c. При бинокулярной фазы этом установлено, длительности монокулярных фаз. Бинокулярной фазы и «пустого» интервала зависят от характеристик стереостимулов.

Дети с содружественным косоглазием без ФСП (n=127) были способны к стереовосприятию в пределах диапазона максимальных и минимальных длительностей монокулярных фаз. Он составлял от 33,1 σ 8,3 до 142,6 σ 14,4 мс для стимулов с линейными элементами и от 28,8 σ 7,2 до 63,1 σ 11,4 мс для случайно-точечных стререограмм. В отличие от детей контроля стереоэффект у этих детей возникал легче со стимулами, содержащими периферические, а не центральные линейные элементы (p<0,001).

Среди детей с содружественным косоглазием и устойчивой ФСП (n=113) наибольшее количество пациентов (70,8%-75,2%), способных к стереовосприятию с линейными стереостимулами, выявлялось при использовании режима с «пустым» интервалом при его длительности 30-60 мс в сочетании с длительностью монокулярных фаз 30-60 мс. Со случайно-

точечными стимулами никто из детей данной группы не был способен к стереовосприятию.

1.5 Исследование зрительных иллюзий

Количественная оценка зрительных иллюзий позволила получить объективные результаты, характеризующие степень их выраженности у детей в норме и при различной офтальмопатологии.

1.5.1 Результаты количественной оценки иллюзий Мюллера-Лайера

Количественную оценку выраженности иллюзии Мюллера-Лайера проводили с учетом минимальных и максимальных ошибок оценки длины ТО относительно РО (в мм) при которых данные отрезки казались ребенку равной длины. Показано, что у детей с ЧАЗН иллюзия Мюллера-Лайера более выражена (выявляются более высокие значения ошибок длины отрезков) по сравнению с детьми с косоглазием и детьми контроля, что может служить дополнительным критерием дифференциальной диагностики органической и функциональной патологии органа зрения.

1.5.2 Разработанный метод количественной оценки иллюзий Поггендорффа

Количественную оценку выраженности иллюзии проводили с учетом минимальных и максимальных значений смещений ТО относительно РО (в мм) при которых данные отрезки казались ребенку расположенными на одной прямой линии (диапазон между ТОтах и ТОтіп) (рисунок 13).

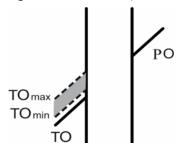
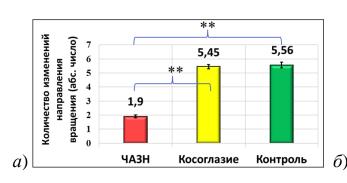



Рисунок 13 — Диапазон между ${\rm TO}_{\rm min}$ и ${\rm TO}_{\rm max}$ в пределах которого TO кажется испытуемому на одной прямой линии с PO

Показано, что наиболее выраженные проявления иллюзии наблюдались у детей с ЧАЗН (p<0,001).

1.5.3 Результаты количественной оценки иллюзии вращения неоднозначных фигур

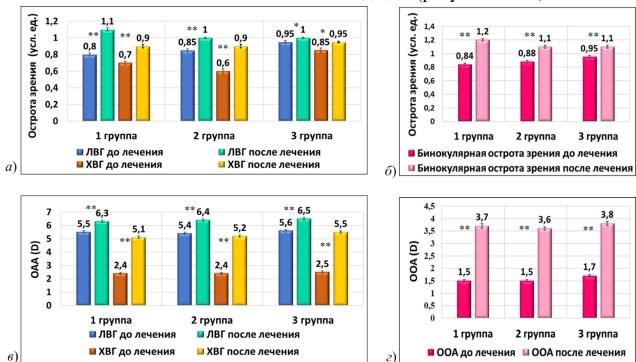
Неоднозначные фигуры (куб Неккера и схематичную фигуру человека) предъявляли на экране монитора при помощи компьютерной программы (ИППИ им. А.А.Харкевича РАН). Количество изменений направления вращения фигуры в минуту для обеих фигур было наибольшим в группе детей с ЧАЗН (рисунок $14\ a,\ \delta$).

Примечание: ** p<0,001

Рисунок 14 — Количество изменений направления вращения неоднозначных фигур: a) куба Неккера; δ) фигуры человека.

1.5.4 Разработанный метод количественной оценки иллюзии «мерцающей решетки»

На основе классических тестовых изображений, вызывающих иллюзию мерцающей решетки, нами были разработаны собственные тестовые фигуры для исследования иллюзии «мерцающей решетки» у детей в норме (n=146), при рефракционной амблиопии (n=133) и при ЧАЗН (n=120). Показано, что у детей с ЧАЗН по сравнению с детьми с косоглазием и детьми контроля наблюдается «сдвиг» максимальной выраженности иллюзии в сторону изображений с большего диаметра (p<0,001),характеризующий дисками расширение летей амблиопией полей. У c наблюдалось рецептивных максимальных значений выраженности иллюзии по сравнению с показателями детей контроля (p<0,001), что связано с функциональным торможением восприятия зрительной информации.


Таким образом, наибольшую выраженность исследованных зрительных иллюзий наблюдали у детей с ЧАЗН, что указывало на возможность использования их в дифференциальной диагностике органической и функциональной патологии у детей с нарушениями.

2 Результаты использования разработанных алгоритмов функционального лечения детей с нарушениями бинокулярного и стереозрения

2.1 Результаты лечения детей с содружественным косоглазием

Для детей с содружественным косоглазием были разработаны три алгоритма: 1-й для детей без устойчивой ФСП (n=77), 2-й для детей с устойчивой ФСП (n=89), 3-й для детей с проявлениями аномальных ретинокортикальных связей (n=44). Наряду с классическими методами лечения каждый алгоритм включал занятия с разработанными компьютерными программами с индивидуальным подбором режимов предъявления

стереостимулов (Патенты: №2173119 РФ от 10.09.2001, №2718266 РФ от 01.04.2020, №2718269 РФ от 01.04.2020). В результате использования созданных алгоритмов во всех трех группах детей наблюдали повышение корригированной монокулярной и бинокулярной остроты зрения, увеличение объемов абсолютной и относительной аккомодации (рисунок $15\ a$ - ϵ).

Примечание: ЛВГ - лучшевидящий глаз, ХВГ - хужевидящий глаз, * p<0,05, ** p<0,001 Рисунок 15 - Динамика монокулярной (a) и бинокулярной (δ) остроты зрения, объема абсолютной (a) и относительной (a) аккомодации у детей трех групп с содружественным косоглазием в результате функционального лечения.

Во всех группах увеличилось количество детей с нормальной корреспонденцией сетчаток и наблюдалось увеличение фузионных резервов (рисунок $16 \ a, \ \delta$).

Примечание: ** p<0,001

Рисунок 16 - Динамика количества детей с НКС (a) и динамика фузионных резервов (б) в результате функционального лечения детей с содружественным косоглазием в трех группах.

Отмечали уменьшение или устранение угла косоглазия в результате функционального лечения у большинства пациентов во всех группах (рисунок 17).

Рисунок 17 - Динамика распределения детей трех групп с содружественным косоглазием в зависимости от величины девиации до и после функционального лечения.

Наблюдали появление стереозрения у большинства детей по Fly-test, и у части детей по более сложному случайно-точечному Lang-test (рисунок $18~a,~\delta$).

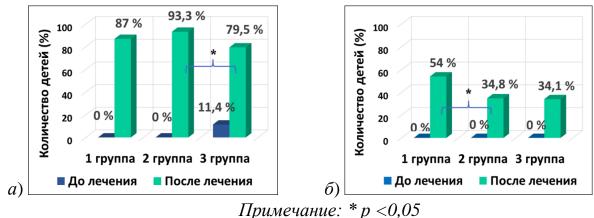


Рисунок 18 — Динамика количества детей со стереозрением по Fly-test (*a*) и по Lang-test (*б*) в результате функционального лечения косоглазия в трех группах.

Результаты оценки СЭ демонстрировали нормализацию векторных отношений монокулярного и бинокулярного механизмов пространственного

зрения в виде повышение оценок величины виртуального конуса в монокулярных условиях и их снижение в бинокулярных (рисунок 19).

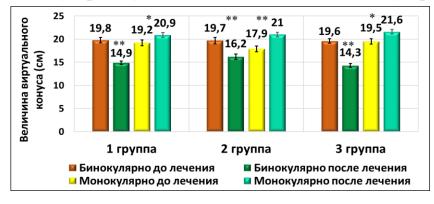
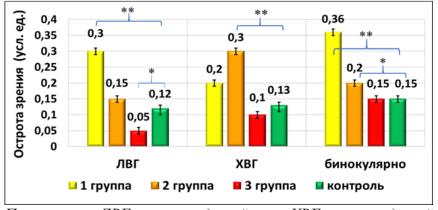
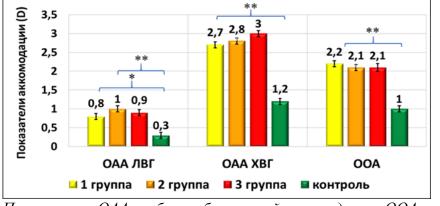


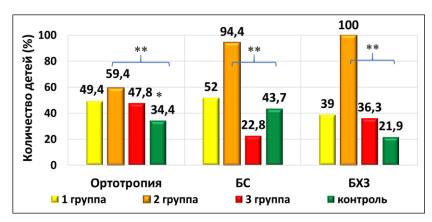
Рисунок 19 — Динамика СЭ в результате функционального лечения косоглазия в трех группах детей.

Примечание: *p < 0.05; **p < 0.001

2.2 Сравнение результатов лечения детей с косоглазием исследуемых групп и контрольной группы

Всем детям контроля проводили 10 занятий на синоптофоре, затем 10 занятий на аппаратно-программном комплексе ЖКОК «Капбис» по стандартной методике. Результаты сравнения динамики зрительных функций у детей 1-3 групп и детей контроля представлены на диаграммах (рисунки 20-23).


Рисунок 20 — Средние значения повышения остроты зрения в результате лечения детей с содружественным косоглазием

Примечания: ЛВГ – лучшевидящий глаз, XВГ – хужевидящий глаз, **p < 0.001, *p < 0.05

Примечания: OAA — объем абсолютной аккомодации, OOA — объем относительной аккомодации, ** p<0,001, * p<0,05

Рисунок 21 – Увеличение объемов абсолютной и относительной аккомодации в результате лечения

количества детей с ортотропией, бифовеальным слиянием и бинокулярным характером зрения в результате лечения

Рисунок 22 – Увеличение

Примечания: EC - бифовеальное слияние, EX3 - бинокулярный характер зрения, ** p < 0.001, * p < 0.05

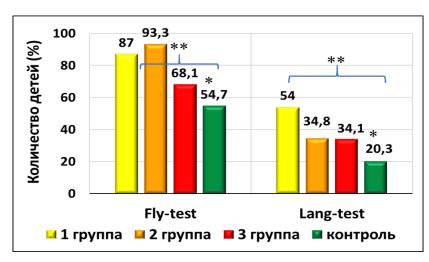
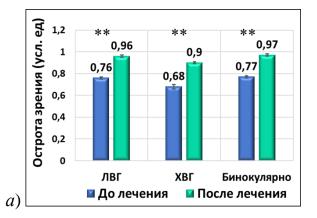
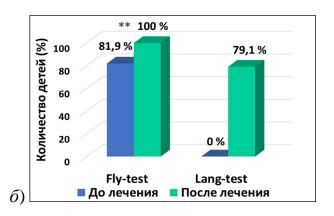
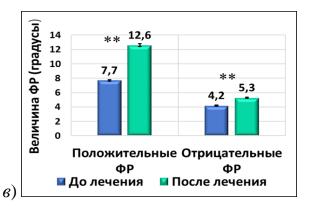



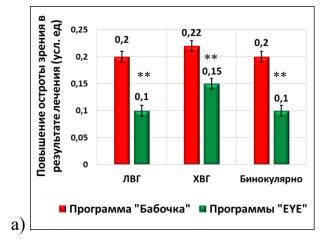
Рисунок 23 — Увеличение количества детей с наличием стереозрения в результате лечения


Примечания: **p<0,001, *p<0,05


2.3 Результаты лечения детей с рефракционной амблиопией

После курса тренировок детей с рефракционной амблиопией (n=105) с разработанными компьютерными программами наблюдали: повышение остроты зрения, улучшение качества стереозрения, увеличение фузионных резервов, (рисунок 24, *a-в*).

Примечания: ЛВГ – лучшевидящий глаз, XВГ – xужевидящий глаз, ** p<0,001



Примечание: ** p<0,001

Рисунок 24 — Динамика в результате лечения детей с рефракционной амблиопией: а) остроты зрения, б) качества стереозрения, в) фузионных резервов.

2.4 Сравнение результатов лечения детей с рефракционной амблиопией с использованием разработанной собственной программы и классических программ «EYE»

Результаты сравнительного анализа результатов лечения в исследуемой и контрольной группах с рефракционной амблиопией представлены на диаграммах (рисунки 25-26).

Примечание: ЛВГ- лучшевидящий глаз, XВГ – xужевидящий глаз, **p<0,001, *p<0,05

Примечание: ΦP - фузионные резервы, ** p < 0.001, *p < 0.05

Рисунок 25 — Средние значения повышения остроты зрения (a) и увеличения фузионных резервов в результате лечения детей с рефракционной амблиопией исследуемой и контрольной групп

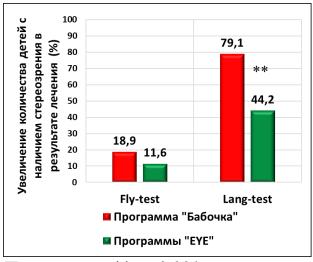


Рисунок 26 — Увеличение количества детей со стереозрением в результате лечения рефракционной амблиопии в исследуемой и контрольной группах

Примечание: ** p<0,001

Таким образом, результаты работы доказывают эффективность разработанной оптимизированной системы экспертных критериев диагностики бинокулярного и стереозрения, а также созданных персонифицированных алгоритмов функциональной коррекции различных видов бинокулярных нарушений у детей.

выводы

- 1. Разработана эффективная комплексная система диагностики нарушений бинокулярного и стереозрения на разных уровнях пространственного восприятия, обеспечивающая персонифицированный подход к выбору оптимальной тактики функционального лечения выявленных нарушений.
- 2. Анализ моторного бинокулярного компонента зрения показал сопоставимость результатов измерения тропии на синоптофоре бинокулярных условиях наблюдения с данными одностороннего cover-теста с призмами, а также сопоставимость результатов измерения общей величины девиации (включающей тропию и форию) на синоптофоре с монокулярным альтернированием и данных альтернирующего cover-теста с призмами, что демонстрирует возможности использования призматической коррекции ДЛЯ компенсации угла косоглазия при исследовании корреспонденции сетчаток и проведении зрительных упражнений.
- 3. Разработана и апробирована модификация теста Баголини, обладающая высокой чувствительностью (96,2%) и специфичностью (92,7%) в диагностике сенсорного компонента бинокулярного зрения с использованием качественных и количественных показателей его оценки в

- условиях анаглифного разделения полей зрения, раскрывающая возможности персонифицированного подхода к выбору функционального лечения и его мониторинга.
- 4. Сравнительный анализ результатов исследования корреспонденции сетчаток с учетом положения проекции изображения на сетчатке парных глаз в условиях механического, анаглифного и растрового разделения полей зрения показал сопоставимость результатов у 74,5% и 85,8% детей (под объективным и субъективным углом косоглазия соответственно), что демонстрирует необходимость учета проецирования изображения под объективным и субъективным углом косоглазия при сопоставлении результатов, полученных разными способами, и проведении зрительных упражнений.
- 5. Создана и апробирована компьютерная программа «Скотома», являющаяся высокоэффективным способом качественной и количественной оценки функционального торможения зрительной информации, соответствующей центральной и периферической зонам бинокулярного поля зрения, что необходимо для эффективной диагностики и мониторинга лечения нарушений бинокулярного зрения.
- 6. Разработан новый, высокоэффективный, бинариметрический диагностики парадоксальной монокулярной фузии, позволяющий выявлять патологические ретино-кортикальные связи у пациентов с содружественным косоглазием в четыре раза чаще (18,3% против 4,6% на синоптофоре, р<0,001) не только в бинокулярных, но и в монокулярных условиях наблюдения, необходимо что ДЛЯ правильного выбора тактики функционального лечения.
- 7. Изучены закономерности проявлений аккомодационно-конвергентной синкинезии при содружественном косоглазии и определены экспертные критерии индивидуального подбора оптимальной оптической коррекции, зависящей от аккомодации, девиации и остроты зрения при проведении зрительных упражнений в условиях бификсации.
- 8. Исследование на ассоциативном уровне пространственного восприятия проявлений зрительных иллюзий («Мерцающей решетки», Мюллера-Лайера, Поггендорффа, вращения неоднозначных фигур) показало их наибольшую выраженность у детей с нарушениями бинокулярного и стереозрения на фоне органической патологии сетчатки и зрительного нерва, что раскрывает

- возможности их применения в дифференциальной диагностике органических и функциональных нарушений зрительного анализатора.
- 9. Изучены условия, необходимые для возникновения стереоэффекта при различных нарушениях бинокулярных зрительных функций и разработаны на основе полученных данных оригинальные компьютерные технологии, позволяющие осуществлять детальную диагностику качества стереозрения, а также проводить функциональное лечение выявленных нарушений с использованием персонифицированного подхода к выбору параметров и режимов предъявления стереостимулов.
- 10. Созданы алгоритмы функционального лечения нарушений бинокулярного и стереозрения у детей с содружественным косоглазием и рефракционной амблиопией, предусматривающие персонифицированный подход к выбору и последовательности применения лечебных мероприятий, включающих использование классических методов и разработанных компьютерных технологий в зависимости от характера и выраженности бинокулярных нарушений.
- 11. Показана высокая эффективность разработанных алгоритмов функционального лечения нарушений бинокулярного и стереозрения, позволяющих увеличить количество детей с бифовеальным слиянием на 39-100% (в зависимости от вида нарушений корреспонденции сетчаток до лечения) и ортотропией на 40,4-59,4% (в зависимости от величины девиации до лечения); увеличить фузионные резервы положительные в среднем на $7,9\pm0,05$ градусов (p<0,001) и отрицательные в среднем на 2,7 $\pm0,03$ (p<0,001) градусов у всех детей с наличием бифовеального слияния; во всех случаях повысить остроту зрения (p<0.05 - p<0.001 в разных группах детей) и улучшить показатели аккомодации (p<0,001); увеличить количество детей с наличием стереозрения не только по Fly-test, но и по более сложному Langtest на 54-79,1% (в зависимости от показателей стереозрения до лечения); нормализовать векторные отношения монокулярного и бинокулярного механизмов пространственного зрения в виде снижения бинокулярных показателей стереокинетического эффекта (р<0,001) и повышения его монокулярных показателей (р<0,05).

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. При измерении величины девиации у пациентов с содружественным косоглазием рекомендуется использовать методические приемы, позволяющие дифференцировать величину тропии от общей величины девиации, включающей тропию и форию.
- 2. Диагностическое исследование корреспонденции сетчаток следует проводить с обязательным учетом наличия или отсутствия компенсации угла косоглазия.
- 3. Для качественной и количественной оценки бинокулярного зрения в условиях анаглифного разделения полей зрения рекомендуется использовать модифицированный тест Баголини и компьютерную программу «Скотома».
- 4. Для выявления патологических ретино-кортикальных связей у пациентов с содружественным косоглазием целесообразно применять исследование на бинариметре с использованием двойных изображений в монокулярных и бинокулярных условиях наблюдения.
- 5. На начальных этапах зрительных тренировок для успешного формирования бинокулярного зрительного образа у детей с содружественным косоглазием необходимо учитывать закономерности аккомодационно-конвергентной синкинезии.
- 6. В процессе зрительных тренировок с компьютерными программами рекомендуется последовательно использовать режим с «пустым» интервалом между монокулярными фазами, затем режим простого альтернирования и затем режим с наличием бинокулярной фазы между монокулярными.
- 7. В функциональном лечении содружественного косоглазия рекомендуется использовать алгоритм лечебных мероприятий, соответствующий характеру и степени выявленных нарушений бинокулярного и стереозрения.
- 8. Функциональное лечении с рефракционной амблиопии целесообразно использовать компьютерные технологии с альтернирующим предъявлением стереостимулов.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. **Рычкова, С.И.** Функциональная коррекция содружественного косоглазия у детей раннего возраста / С.И. Рычкова, И.Э. Рабичев, А.И. Рабичева [и др.] // Сибирский медицинский журнал. 2002. №2. С.34-35.
- 2. **Рычкова, С.И.** Изучение возможностей применения ЖК-очков для восстановления зрительных функций у детей при косоглазии / С.И. Рычкова, И.Э. Рабичев, Т.П. Кащенко, Н.А. Аклаева, П. Шомо // Вестник оптометрии. 2003. №5. С. 24-26.
- 3. **Рычкова, С.И.** Исследование функциональной скотомы с помощью аппаратно-программного комплекса «жидкокристаллические очки-компьютер» / С.И. Рычкова, А.В. Короленко // Сибирский медицинский журнал. 2005. №6. С. 60-61.
- 4. **Рычкова, С.И.** Современные представления о корреспондирующих свойствах сетчаток в норме и при содружественном косоглазии / С.И. Рычкова, Л.Н. Бачалдина, А.Г. Щуко // Сибирский медицинский журнал. 2006. №2. С.14-16.
- 5. Щуко, А.Г. Бинариметрия у пациентов с миопией высокой степени осложненной экзофорией как этап реабилитации после лазерного кератомилеза / А.Г. Щуко, О.В. Писаревская, Л.Н. Бачалдина, **С.И. Рычкова**, А.В. Короленко // Сибирский медицинский журнал. − 2006. №6. С.43-45.
- 6. **Рычкова С.И.** Бинариметрия и жидкокристаллические очки в послеоперационной реабилитации детей с содружественным сходящимся косоглазием / С.И. Рычкова, А.Г. Щуко, В.В. Малышев // **Офтальмохирургия.** 2008. №3. С. 24-26. *
- 7. **Рычкова С.И.,** Тяжев М.Ю., Писаревская О.В. Бинариметрия в реабилитации пациентов после рефракционных операций по поводу миопии высокой степени, осложненной экзофорией / С.И. Рычкова, М.Ю. Тяжев, О.В. Писаревская // **Офтальмохирургия.** 2008. № 3. С. 30-32. *
- 8. Рычкова, С.И. Острота зрения, аккомодация и оптимальная оптическая коррекция при косоглазии в постоперационном периоде / С.И. Рычкова, Г.И.Рожкова // Сенсорные системы. 2009. № 1. С. 24-39.
- 9. **Rychkova S.** Paradoxical fusion of two images and depth perception with a squinting eye / S. Rychkova, J. Ninio // Vision Research. 2009. V. 49 (5). P. 530-535. Doi.org/10.1016/j.visres.2008.12.018 *
- 10. **Rychkova, S.** Alternation frequency thresholds for stereopsis as a technique for exploring stereoscopic difficulties / S. Rychkova, J. Ninio // i-Perception. 2011. -V. 2. P 1-17. Doi.org/10.1068/i0398 *

- 11. **Рычкова, С.И.** Парадоксальная монокулярная фузия при непостоянном косоглазии и анормальной корреспонденции сетчаток / С.И. Рычкова // Сенсорные системы. 2014. №2. С. 39-48.
- 12. **Рычкова, С.И.** Влияние офтальмопатологии на иллюзорное вращение неоднозначных фигур у школьников / С.И. Рычкова // Сенсорные системы. 2014. №4. С. 68-74.
- 13. **Рычкова, С.И.** Влияние офтальмопатологии на восприятие фигур Поггендорффа и Цолльнера у школьников / С.И. Рычкова // Сенсорные системы. -2015. \mathbb{N}_{2} . С. 142-147.
- 14. **Рычкова, С.И.** Количественная оценка иллюзии Мюллера-Лайера у школьников в норме и при офтальмопатологи / С.И. Рычкова // Сенсорные системы. 2015. №3. С. 245-251.
- 15. Рожкова, Г.И. Индивидуальная оптимизация функциональной коррекции нарушенного бинокулярного зрения / Г.И. Рожкова, С.И. Рычкова, М.А. Грачева, Х.П. Тахчиди // Сенсорные системы. 2015. №4. С. 341–353.
- 16. **Рычкова, С.И.** Частотные пороги восприятия стереообразов при попеременном предъявлении левого и правого изображений стереопары у детей с офтальмопатологией / С.И. Рычкова // **Физиология человека.** − 2015. − Т. 41, №2. С. 5–13. Doi.org/10.7868/S0131164615010129 *
- 17. **Рычкова,** С.И. Индивидуальные показатели результативности тренировок аккомодации в условиях контроля конвергенции у пациентов с миопией и гиперметропией / С.И. Рычкова, М.А. Грачева, Х.П. Тахчиди // Сенсорные системы. 2016. №1. С. 42-52.
- 18. **Рычкова, С.И.** Комплексная оценка функциональных скотом у пациентов с косоглазием / С.И. Рычкова, М.А. Грачева, И.В. Сенько, Х.П. Тахчиди // Сенсорные системы. 2016. № 4. С. 312–318.
- 19. Ninio, J. Stereoscopic memory when stimuli no longer persist: Void and binocular intervals in alternating monocular presentations / J. Ninio, **S. Rychkova** / Optometry: Open Access, 2016. V.1(1). P. 1–10. Doi.org/10.4172/omoa.1000104
- 20. **Рычкова, С.И.** Количественная оценка иллюзии Поггендорффа у школьников с нормальным бинокулярным зрением и при косоглазии / С.И. Рычкова // Сенсорные Системы. 2018. №2. 137–144.
- 21. Тахчиди, Х.П. Ретроспективный анализ эффективности коррекции зрительных функций у детей в условиях образовательного учреждения / Х.П. Тахчиди, С.И. Рычкова [и др.] // Российская детская офтальмология. 2019. №2. С. 33-38. Doi.org/10.25276/2307-6658-2019-2-33-38
- 22. **Рычкова, С.И.** Фазовая гаплоскопия и особенности стереовосприятия при косоглазии / С.И. Рычкова // **Вестник офтальмологии.** 2018. № 4. С. 11-16. Doi.org/10.17116/oftalma201813404111*

- 23. **Рычкова, С.И.** Исследование Иллюзии фосфенов у школьников с частичной атрофией зрительного нерва и с нормальным состоянием глазного дна / С.И. Рычкова, Р.И. Сандимиров, Л.В. Кособуцкая // **Физиология человека.** 2019. Т.45, №5. С. 57-65. Doi.org/10.1134/S0131164619050163 *
- 24. **Рычкова, С.И.** Зависимость стереокинетического эффекта от скорости вращения и эксцентриситета тестового изображения у детей с частичной атрофией зрительного нерва / С.И. Рычкова, Р.И. Сандимиров, Л.В. Кособуцкая // **Физиология человека.** − 2019. − Т.45, №4. С. 13-22. Doi.org/10.1134/S0131164619040143 *
- 25. **Рычкова, С.И.** Результаты использования альтернирующего предъявления стимулов в ортоптическом лечении у детей / С.И. Рычкова, В.Г. Лихванцева // **Офтальмохирургия.** − 2019. №2. − С. 50-58. Doi.org/10.25276/0235-4160-2019-2-50-58 *
- 26. **Рычкова, С.И.** Результаты использования альтернирующего предъявления различных стереостимулов для исследования способности к стереовосприятию у детей с послеоперационной остаточной микродевиацией / С.И. Рычкова, М.-С. Diraison, В.Г. Лихванцева // **Офтальмохирургия.** − 2019. №3. − С. 29-35. Doi.org/10.25276/0235-4160-2019-3-29-35*
- 27. **Рычкова, С.И.** Взаимоотношения монокулярного и бинокулярного механизмов пространственного восприятия до и после функционального лечения у детей с послеоперационной остаточной микродевиацией / С.И. Рычкова, В.Г. Лихванцева // **Офтальмохирургия.** 2019. №4. С. 42-49. Doi.org/10.25276/0235-4160-2019-4-42-49 *
- 28. **Рычкова С.И.** Результаты исследования корреспонденции сетчаток у пациентов с содружественным косоглазием при разных способах разделения полей зрения / С.И. Рычкова, В.Г. Лихванцева // **Офтальмохирургия.** 2020. №1. С. 62-70. Doi.org/10.25276/0235-4160-2020-1-62-70*
- 29. **Рычкова, С.И.** Применение модифицированного теста Баголини в диагностике нарушений бинокулярного зрения / С.И. Рычкова, В.Г. Лихванцева // **Офтальмология.** 2020. Т.17, №3. С. 435-441. Doi.org/10.18008/1816-5095-2020-3-435-441 *
- 30. **Рычкова, С.И.** Способ функционального лечения рефракционной амблиопии у детей с использованием альтернирующего предъявления стереостимулов / С.И. Рычкова, В.Г. Лихванцева // **Офтальмология.** − 2020. Т.17, №3. С. 429-434. Doi.org/10.18008/1816-5095-2020-3-429-434 *
- 31. **Рычкова, С.И.** Применение гиперкоррекции в диагностике и функциональном лечении у детей с содружественным косоглазием / С.И. Рычкова, В.Г. Лихванцева // **Офтальмология.** 2020. Т.17, №3. С. 442-450. Doi.org/10.18008/1816-5095-2020-3-442-450 *

- 32. **Рычкова, С.И.** Количественная оценка иллюзии Поггендорффа у школьников в условиях предъявления трехмерного изображения / С.И. Рычкова, Р.И. Сандимиров, Л.В. Кособуцкая // **Физиология человека. -** 2020. − Т.46. №4. С. 22-29. Doi.org/10.31857/S0131164620020162 *
- 33. **Рычкова,** С.И. Результаты использования разных режимов предъявления стереостимулов в исследовании стереозрения у детей в норме и при содружественном косоглазии без функциональной скотомы подавления / С.И.Рычкова, В.Г. Лихванцева // **Офтальмология.** − 2021. − Т.18. №2. С. 296-308. Doi. org/10.18008/1816-5095-2021-2-296-308 *
- 34. **Рычкова,** С.И. Результаты использования альтернирующего предъявления стереостимулов у детей при содружественном косоглазии с функциональной скотомой подавления / С.И.Рычкова, В.Г. Лихванцева // **Офтальмология.** − 2021 − №2. − Т.18. №2. − С. 309-316. Doi. org/10.18008/1816-5095-2021-2-309-316 *

Монография: Теоретическая и клиническая бинариметрия / Л.Н. Бачалдина, И.Н. Гутник, А.В. Короленко, **С.И.Рычкова** и др.; под ред. проф. А.Г.Щуко, проф. В.В. Малышева. – Новосибирск: Наука, 2006.- 184 с.

Положительное решение по заявкам на патенты:

- 1. Способ восстановления бинокулярного зрения. Патент № 2173119 РФ / Кащенко Т.П., Шомо П., Рабичев И.Э., **Рычкова С.И.**, Ячменева Е.И., Рабичева А.И. (10.09.2001).
- 2. Способ одновременной оценки степени функционального подавления одного глаза другим в области фиксации взора и в разных точках поля зрения и компьютеризированная система для его осуществления. Патент № 2645415 РФ / Тахчиди Х.П., Рожкова Г.И., Стрижебок А.В., Воробьева Д.А., Сенько И.В., **Рычкова С.И.** [и др.] (21.02.2018).
- 3. Способ оценки состояния и коррекции нарушений бинокулярного зрения. Патент № 2718266 РФ / **Рычкова С.И**., Лихванцева В.Г., Жмуров М.В. (01.04.2020).
- 4. Способ восстановления и развития стереозрения. Патент №2718269 РФ / **Рычкова С.И.**, Лихванцева В.Г., Жмуров М.В. (01.04.2020).

Публикации в отечественных сборниках:

- 1. **Рычкова, С.И**. Особенности коррекции зрительных функций с помощью бинариметра у пациентов с миопической рефракцией в сочетании с экзофорией / С.И. Рычкова, [и др.] // Глаукома и другие проблемы офтальмологии: Сб. науч. Тр. Тамбов, Микрохирургия глаза. 2005. С. 247-252.
- 2. **Рычкова, С.И**. Острота зрения для разных расстояний наблюдения при аметропии и артифакии / Рычкова С.И., Рожкова Г.И. // Биомеханика глаза. Сб. трудов конференции. М.: МНИИГБ им. Гельмгольца, 2009. С. 24-29.

- 3. **Рычкова, С.И**. Использование комплексной терапии для развития зрительных функций у детей со слабовидением в условиях специальной школы-интерната / С.И. Рычкова, И.Г. Куман // Невские горизонты-2012. Сб. трудов конференции. Санкт-Петербург 12-13 октября 2012. С. 35-36.
- 4. **Рычкова, С.И**. Структура офтальмопатологии и возможности функционального лечения у детей со слабовидением в условиях коррекционной школы-интерната / С.И. Рычкова // XI Всероссийская научно-практическая конференция с международным участием "Федоровские чтения 2013": Сб. тез. / Под ред. Б.Э.Малюгина. Москва 21-20 июня 2013. М.: Изд-во "Офтальмология", 2013. С. 29.
- 5. **Rychkova, S.** Visual acuity and accommodation for various viewing distances in normal subjects and in patients with ophthalmopathology / S. Rychkova, G. Rozhkova, I. Lozinsky // 41-st Meeting of the European Paediatric Ophthalmological Society, Book of abstracts. St. Petersburg, 2015. P. 81.
- С.И. Рычкова, Опыт индивидуального подбора режима альтернирующего предъявления стимулов В функциональном лечении Российский косоглазия С.И. Рычкова // общенациональный офтальмологический форум: Сб. науч. тр. / Под ред. В.В. Нероева. – М.: Апрель, 2018. – Т.1. – С. 203-207.
- 7. **Рычкова, С.И**. Результаты использования модифицированного теста Баголини в исследовании бинокулярных функций у пациентов с косоглазием / С.И. Рычкова // Российский общенациональный офтальмологический форум, 11-й: Сб. науч. тр.: В 2 т. / под ред. В.В. Нероева. М.: Апрель, 2018. Т.1. С. 207-211.

В зарубежных сборниках:

- 1. **Rychkova, S.** Paradoxical fusion of two images with a squinting eye / S. Rychkova, V. Malychev // 30th ECVP 2007. Arezzo, Italy. 27-31 August. Perception (Q2). 2007. V. 37, Suppl. P. 71. *
- 2. **Rychkova, S.** Depth perception following monocular fusion of two images with a squinting eye / S. Rychkova, J. Ninio // 31st ECVP 2008. Utrecht, Netherlands. 24-28 August. Perception. 2008. V. 36, Suppl. P. 15. *
- 3. **Rychkova, S.** Alternation frequency thresholdsfor stereopsis reveal different types of stereoscopic difficulties/ Rychkova, J. Ninio // 32nd ECVP 2009. Regensburg, Germany. 24-28 August. Perception. 2009. V.38, Suppl. P. 59. *
- 4. **Rychkova, S.** Stereoscopic memory beyond stimuli persistence: the multiplicative effect of binocular intervals / S. Rychkova, I.E. Rabitchev, J. Ninio // 33rd ECVP 2010. Lausanne, Switzerland. 22-26 August. Perception. 2010. V. 39, Suppl. P. 161. *

- 5. Holmogorova N.V. Illusory rotation of ambiguous figures in children with ophthalmopathologiy / N.V. Holmogorova, **S. Rychkova**, S.V. Feoktistova // 34td ECVP. Toulouse, France. 27-30 August. Perception. 2011. V. 40, Suppl. P.123. *
- 6. **Rychkova, S.** Zollner and Poggendorff illusions in children with ophthalmopathology / S. Rychkova, A. Bolshakov // 36th ECVP 2013. Bremen, Germany. 25-29 August. Perception. 2013. V. 42, Suppl. P.70. **
- 7. Gracheva, M. Individual variability in visual acuity improvement due to binocular fusion and accommodation training / M. Gracheva, **S. Rychkova**, G. Rozhkova // 38th ECVP 2015. Liverpool, UK. 24-27 August. Perception. 2015. V. 44, Suppl. P.296. Doi.org/10.1177/0301006615598674*
- 8. **Rychkova, S.** Alternation frequency ranges for stereopsis in patients with strabismus / S. Rychkova, M. Gracheva, M. Zhmurov // 39th ECVP 2016. Barcelona, Spain. 28-30 August. Perception. 2016. V. 45, Suppl. P. 300. Doi.org/10.1177/0301006616671273*
- 9. Gracheva, M. Interactive computer trainings for improvement of binocular functions / M. Gracheva, S. **Rychkova**, I.V. Senko, H.P. Tahchidi // 1st International Symposium on Visual Physiology, Environment, and Perception. Riga, Latvia. 6-8 october, 2016. Book of abstracts. P. 46-47. *
- 10. **Rychkova, S**. Computer-aided techniques in analysis and treatment of strabismic suppression: practical issues / S. Rychkova, M. Gracheva, I.V. Senko // 1st International Symposium on Visual Physiology, Environment, and Perception. Riga, Latvia. 6-8 october, 2016. Book of abstracts. P. 47-48. *

Метолическое пособие

Курышева, Н.И. Бинокулярное зрение и методы его исследования / Н.И. Курышева, **С.И.Рычкова** [и др.] // Методическое пособие. М., 2013. – 17 с.

Список сокращений

ОУ	Объективный угол косоглазия
СУ	Субъективный угол косоглазия
НКС	Нормальная корреспонденция сетчаток
AKC	Аномальная корреспонденция сетчаток
ФСП	Функциональная скотома подавления
$\Pi M \Phi$	Парадоксальная монокулярная фузия
СЭ	Стереокинетический эффект
ЧАЗН	Частичная атрофия зрительного нерва
OOA	Объем относительной аккомодации
OAA	Объем абсолютной аккомодации

^{* -} публикации в изданиях, включенных в международные базы цитирования WoS и/или Scopus